
SFH: Hashing Unordered and Incomplete
Network Streams on the Fly

Chao Zheng1,2,3, Xiang Li1,2, Qingyun Liu1,2, Yong Sun1, and Binxing Fang4

1 Institute of Information Engineering, Chinese Academy of Sciences
2 School of Cyber Security, University of Chinese Academy of Sciences

3 National Engineering Laboratory for Information Security Technologies
4 Institute of Electronic and Information Engineering of UESTC in Guangdong

zhengchao@iie.ac.cn,liuqingyun@iie.ac.cn

Abstract. The Deep Packet Inspection system usually uses a white/black
MD5 list or regular expressions to identify viruses, malicious software or
certain internal files from network traffic. Fuzzy hash, namely context
triggered piecewise hash has the ability to compare two different files,
and determine the similarity level. We focus on applying fuzzy hash on
network traffic to identify files with real-time constraints, in which input
is concurrency and stream based. In this paper, we present the SFH algo-
rithm, which has the ability of hashing files on the fly, no matter whether
the input is unordered, incomplete or of an initially undetermined length.
SFH can generate a signature of appropriate length in a one-way pro-
cess, and reduce the computational complexity from O(nlogn) to O(n).
In particular, on a typical DPI scenario, SFH can hash files in a 68MB/s
per CPU core, and consume no more than 5KB memory per file. To
justify the effectiveness of SFH, we evaluated its performance on a pub-
lic dataset. Compare to other fuzzy hash algorithms, SFH’s precision
and recall are not compromised for processing unordered and incomplete
input.

Keywords: fuzzy hash, network traffic, approximate matching, file track-
ing

1 Introduction

Identifying content in transmission from network traffic is valuable for deep
packet inspection (DPI) applications, such as malware detection, data leakage
prevention (DLP), and Digital Forensics. These applications basically search for
predefined signatures in the packet payload, which could be string patterns,
cryptographic hash values, etc. For example, SNORT [23] inspects file content
with regular expressions, and Suricata [10] computes MD5 checksum of the file.
Furthermore, in order to deal with new security threats, many efforts have been
devoted to identifying both similar and fragment files from network traffic, e.g.
bloom filter [7], machine learning [8] and fuzzy fingerprint [30]. However, with
the increasing amount of network throughput and new transmission optimiza-
tion technologies, these solutions have become unfeasible. The reason is twofold.

First, DPI’s scarcity computation resource is not allowed to run complicated
algorithms on high throughput traffic. Second, emerging technologies such as
multi-thread downloading, P2P file sharing and cyberlocker file upload make
middlebox impractical to acquire an ordered file stream, neither during nor af-
ter the transmission.

Fuzzy hash is also known as context triggered piecewise hashes (CTPH), it
basically slices input file to pieces by a context triggered algorithm and then
hash each pieces individually. Compared to cryptographic hash algorithms such
as MD5 and SHA1, fuzzy hash can still recognize a subtly changed file; for in-
stance, inserting a character to a document. This feature makes fuzzy hash very
appealing to DPI applications. But unfortunately, current fuzzy hash algorithms
can only work on intact and stored files. On applying fuzzy hash to files in trans-
mission, we found that the challenges were quite different from the conventional
scenario, including incomplete capture, unordered fragments and a much higher
memory consumption to buffer them.

In this paper, we propose an improved fuzzy hash algorithm, which can detect
similar files from network traffic with constrains including real-time, incomplete
input and memory efficient. For its feasible to apply on streamed and unordered
data, we call it SFH (for Stream Fuzzy Hash). SFH uses a compact structure
to record computation context, and can hash unordered fragments individually
with almost no buffer, and ultimately generate a proper length of signature in a
one-way process. Our test shows SFH can hash data in 68MB/core/s in a typical
multi-thread transfer scenario, and consume no more than 5KB memory per file
which is irrelevant to file size. In addition, we applied SFH in practice to evaluate
its effectiveness. The innovations of our work are:

– We discussed the difficulties of tracking files in real network traffic, includ-
ing limited computation resource, an initially undetermined length, one-way
processing, unordered input and incomplete capture.

– We tackled above challenges by proposing SFH, a fast and memory-efficient
fuzzy hash algorithm that can deal with unordered file fragments individually
with merely 6 bytes of buffer. In addition, comparing to original fuzzy hash,
the time complexity of SFH is reduced from O (n log n) to O (n).

– We evaluated SFH and three other fuzzy hash implementations, and our
result shows that SFH achieved above goals without compromise of its ability
on identifying similar files.

The SFH’s ability of tracking files in transmission from network traffic could
be very useful in network measurement, malicious software detection and data
leakage protection, etc.

2 Preliminaries

In this section, we first introduce fuzzy hash algorithm, which is the primitive
version of SFH. Then the Tillich-Zémor Hash, which is used as a strong hash in
SFH for its concatenation property thus saving memory.

2.1 Fuzzy Hash Algorithm

Cryptographic hash algorithms like MD5 and SHA1 have good avalanche effect,
which means flipping a single bit of a file should cause a drastic change in the
cipher text. It’s a desirable property of cryptographic algorithms for security
purpose. But computer forensic investigators endeavor to find a hash algorithm
that has the ability to compare two distinctly different items and determine a
fundamental level of similarity. Context triggered piecewise hashes (CTPH), aka
fuzzy hash, is one of the many options. Unlike cryptographic hash functions, it
is not specifically designed to be difficult to reverse by an adversary, making it
unsuitable for cryptographic purposes. The concept of fuzzy hash was invented
by “spamsum” [33], or Nilsimsa [19] in another version, and then [17] formalized
the method and developed ssdeep [14] to apply the algorithm to digital forensics.

The unique properties of fuzzy hash are described as below.
Non-propagation : In fuzzy hash, only the part of the signature that corre-

sponds linearly with the changed part of the binary will be changed. This means
that small changes in any part of the plain text will leave most of the signature
the same.

Alignment robustness : Most hash algorithms are very alignment sensi-
tive. Deleting or inserting a single byte to the plain text will generate a com-
pletely different hash value. The core of the fuzzy hash algorithm is a rolling hash
used to produce a series of reset points in the binary. The reset point depends
only on the immediate context. Fuzzy hash uses a variable named block size b to
trigger reset point. The block size can be calculated with eq.1, that could ensure
that the fuzzy hash result length of a certain file is neither too long to compare
nor too short to avoid collisions. bmin is a constant minimum block size, S is a
constant expected fuzzy hash length, n is an input file size. Note that file size is
not always available in network traffic. We’ll discuss this in Section 3.

binit = bmin2

⌊
log2

(
n

Sbmin

)⌋
(1)

With a rolling hash function of k window, given an input sequence of k bytes:
c1c2 . . . ck when

rolling hash (c1c2 . . . ck) mod b = b− 1 (2)

is satisfied, a reset point will be positioned at ck. Statistically, the smaller b
is, the more reset points are triggered.

The stronger hash based on the FNV algorithm is then used to produce hash
values of the areas between two reset points. The resulting signature comes from
the concatenation of a single character from the FNV hash per reset point. Once
the signature is produced, if its length is less than S/2 characters. The fuzzy
hash algorithm reduces the block size b ← b/2 and the algorithm is executed
one more time until a signature of at least S/2 characters is produced. Some
researchers have proposed improvements to reduce such recalculation, but still
couldn’t eliminate the iterative processing [6] [2].

String edit distance algorithm will be used to measure different files’ fuzzy
hash value’s similarity percentage.

2.2 Tillich-Zémor Hash

The Tillich-Zémor [31] hash function is defined by mapping each binary string
to a matrix over a finite field of matrices with determinant 1. Each element in
the alphabet is first mapped to a matrix from a generator set. The next step is
to multiply corresponding matrices according to their order in the binary string.
Its security under certain attacks is proven to be equivalent to associating to
such a function a Cayley graph.

The TZ hash can be described as follows.
Defining parameter. An irreducible polynomial Pn (X) of degree n in the

range 130-170.
TZ hash algorithm. Let A and B be the following matrices.

A =

(
X 1
1 0

)
B =

(
X X + 1
1 1

)
Define the mapping

π = {0, 1} → {A,B}
0→ A
1→ B

The hash code of binary message x1x2 . . . xk is just the matrix product

π (x1)π (x2) . . . π (xk)

Where computations are made in the quotient field F2n = F2 [X]�Pn (X) of
2n elements. Since Tillich-Zémor Hash uses group SL2 (G) to present a bit of
input data and multiply these matrices as the hash result, it has a concatenation
property. This feature is fascinating to SFH, which will be detailed in Section 4.2.
This is intended as an overview of the Tillich-Zémor hash, so some level of proving
detail will remain outside the scope of this paper. It should be noted that there
have been successful attacks on TZ hash function’s collision resistance and pre-
image resistance property [12] [22], but the vulnerability could be fixed by recent
research [16] [15]. Thus, TZ hash is still strong enough for non-cryptographic
purposes.

3 Challenges

As we mentioned before, fuzzy hash has been applied on many domains for
its ability to compare two different files and determine a fundamental level of
similarity. On applying fuzzy hash on network traffic to identify similar files in
transmission, we encounter some new difficulties.

An initially undetermined size : File size may be undetermined until
the end of a transmission. For example, if an HTTP session is non-keep-alive
or chunked, content-length region is optional [9]. That’s not a problem for hash
algorithms like MD5 and SHA-1. However, file size is a crucial parameter to a

fuzzy hash implementation, for it is as the input to produce a trigger value, that
will be referred to as the block size, which was used to generate pieces.

One-way processing : In order to generate a signature with proper length, a
fuzzy hash needs to adjust the rolling hash trigger value and calculate iteratively.
As network traffic is high throughput, e.g. 10Gigabit Ethernet, in which it’s
impracticable to store the file content on the hard disk, so there is no second
chance for recalculation.

Unordered input : The state-of-the-art transmission technologies split a
file into fragments for transmission efficiency and agility, such as multi-thread
downloading, P2P file sharing and cyberlocker service (e.g. Mega Upload and
Baidu Cloud). Fig 1 is a typical multi-thread transfer scenario, where the grey
block represents a file fragment. At time t3, any file offset in range 0-3M may
appear. Fuzzy hash algorithm can only calculate from the file head or a reset
point, so that unordered fragments must be buffered until all preceding data is
received. In the worst case, almost the whole file is buffered, which makes the
memory consumption unacceptable.

Incomplete capture : It is a common observation that files captured from
network traffic are incomplete due to packets loss or processing error. Packet
loss is a common problem in middleboxes like Intrusion Detection System (IDS)
or Data Leakage Protection (DLP) system, for they can’t deal with a burst of
network traffic or an attack. Meanwhile, there are also human factors that could
compromise the integrity of the captured file. For example, dragging progress
bar of an on-line video, or manually terminating the transfer session.

Offset

Time Linet0 t1 t2 t3 t4 t5 t6 t7 t8

5M

4M

3M

2M

1M

0

Fig. 1: Example of an out-of-sequence transfer.

4 Stream Fuzzy Hash

Based on the previous discussion, we now describe our design and implementa-
tion of Stream Fuzzy Hash, and the rationale for the design approach we adopt.

4.1 Overview

As we’ve introduced in Section 2.1, a fuzzy hash algorithm is composed of a
rolling hash to generate reset points, and a stronger hash to produce hash values
for each pieces between two reset points.

SFH uses a context to record each discrete data segment’s calculation result.
Considering that an unordered data segment is common, and each one will gen-
erate a segment contexts, we use an interval tree [1] to organize one file’s several
segment contexts efficiently. SFH uses the Tillich-Zémor hash instead of FNV
as the strong hash function , which enables SFH buffer each discrete segment
with no more than 6 bytes. Moreover, through a fine-grained adaptive mecha-
nism, SFH could generate a fuzzy hash signature in a one-way process. If a file
is confirmed incomplete after transmission, the missing parts of a file will not
affect other intervals, for each signature is generated individually. As shown in
Fig 2, we defined three basic operations on above data structure which include:

Updating the SFH segment context with an incoming data segment. There
is no limitation on data size and beginning offset.

Merging the adjacent SFH segment contexts when an input data fills the
gap of the interval tree.

Tuning the block size during hash if the current signature length exceeds
the upper limit. That intend to generate a signature with proper length in a
one-way process.

[8, 9]

context

[5, 8]

context

[0, 3]

context

[6, 10]

context

[15, 23]

context

[16, 21]

context

[25, 30]

context

[17, 19]

context

[26, 26]

context

[19, 20]

context

range
merge

signature:
tune

update

Input Segment

[8,9]

Fig. 2: Update, merge and tune operation in SFH.

4.2 Segment context

SFH uses a context to represent an in-progress fuzzy hash calculation of a data
segment. This data segment may belong to any range of the original file, and
have no minimum length limit. As shown in Fig 3, by running rolling hash on
each byte of the segment, a data segment is sliced to marginal data, sliced data
and truncated data accordingly.

1. Marginal data is the range before the first reset point that strong hash cannot
be applied on.

2. Sliced data is the range between two reset points that are eligible for strong
hash.

3. Truncated data is the range from the last reset point to the end that is also
eligible for strong hash, but has an unfinished hash result.

reset points

strong hash

strong hash state

rolling hash state

truncated

rolling hash

slice2slice1

strong hash value of slices

 rolling hash value of reset points

marginal

r1 r2 r3

partial strong
hash value

mbuffer[window-1]

s1 s2

Fig. 3: A data segment’s SFH segment context.

Most of the hash algorithm must hash the data from the beginning, so the
marginal part before a reset point is not ready to make a strong hash, that’s
why we buffer it in the context. However, buffering the marginal data may cause
severe memory overload; in the worst case, the whole file is buffered in the
calculation contexts. This is unaffordable for a middle box when hashing multiple
gigabit files.

The TZ(short for Tillich-Zémor) hash has two attractive features:
Concatenation property of partial TZ hash result is our favorite. This

nature is benefited by TZ hash using group SL2 (G) to present a bit of input
data and multiply these matrices as the hash result. For example, the TZ hash
process of d1d2d3 in (3) can be computed individually.

hashTZ (d1d2d3) = hashTZ (d1d2)hashTZ (d3) (3)

This design is conducive to parallel computing. In SFH, the marginal part is
separated to a partial TZ hash value and a buffer of size rolling window-1. In
our implementation, it is 6 bytes for each discrete data segment.

Computational efficiency of TZ hash is another advantage we prefer. Ma-
trix multipliers are made in the quotient field F2n , which can be easily computed
in a few shifts and XOR’s of 150-bit quantities per message bit. Because SFH
is a non-cryptographic hash function and will reduce the strong hash result by
recording only a base64 encoding of the six least significant bits (LS6B [33])
of each hash value, we choose n=8 instead of the range 130-170 to define the
quotient field F2n . The irreducible polynomial we choose is eq.4.

F2n = x8 + x4 + x3 + x2 + 1 (4)

Table 1: Notation of SFH context member

Symbol Meaning

mbuff marginal data buffer of context, may have reset point.

msize buffered size of mbuff, up to 6 bytes

ps partial strong hash value of unbuffered marginal data

stater rolling hash state of truncated data

states
strong hash state of truncated data, a matrix within group
SL2 (G)

arrayr an array to store rolling hash values of reset points

arrays an array to store strong hash matrixes between reset points

backups a backup of arrays before last tune operation

By looking up a Galois multiplication table, the computation could be effi-
cient, which we’ll discuss in Section 6. After invoking TZ hash, the members in
an SFH context are described as in Table 1.

4.3 Context Updating

Before describing the update algorithm, we prefer to give a brief introduction to
interval tree. An interval tree is a tree data structure to hold intervals. Specif-
ically, it allows one to efficiently find all intervals that overlap with any given
interval or point. We implement the interval tree based on red-black tree. Inter-
val tree is dynamic data structure, that allows efficient insertion and deletion of
an interval in O (log n). As we cannot allow intervals overlapped in the tree, the
query time is O (log n) too.

When a new data segment comes, we first find its SFH segment context by
querying the interval tree with the incoming data’s start offset and end offset.
If it’s overlapped with any previous data segments, e.g. retransmission, for the
convenience of computing, the new segment’s duplicate part will be discarded.
And then, the rest of input data is used to update the context as the orignal
fuzzy hash, except the FNV was replaced by Tillich-Zémor hash.

4.4 Contexts Merging

The discrete calculation contexts in interval tree may be adjacent if an incom-
ing segment filled the gap, then a merge operation was triggered. Merging the
adjacent SFH segment contexts could decrease the node number of interval tree,
and shorten the searching time. Fig 4 shows the process of merging two adjacent
contexts, namely p and n. The basic idea lies in the associative law of TZ hash,
that strong hash value of discrete fragments can be computed individually and
concatenated when they are consecutive. Also, the rolling hash is continued with
the 6 bytes in mbuff.

truncatedslicesmarginal

ps

mbuff[window-1]

X

truncatedslicesmarginal

ps

mbuff[window-1]

p n

state r

states

Matrix multiplication on Galois Field

states

state r

Continue rolling hash

Fig. 4: Merging of two adjacent contexts.

4.5 Block size Tuning

The number of reset points generated by the rolling hash function is decided
by three parameters, namely file length, randomness of file content and the
block size. The randomness of file could be measured by the file’s entropy. For
comparing convenience, fuzzy hash should limit the signature length to a definite
range. Original fuzzy hash achieves this goal by iteratively adjusting the initial
block size and recalculating the hash until it gets a desirable one. But this method
is infeasible for files in transmission as we’ve discussed in Section 3. On the one
hand, the file length may be undetermined before the calculation, so we can’t get
an initial block size with eq.1. On the other hand, using a fixed block size makes
signature length unpredictable and there’s no second chance for recalculation in
a one-way process.

SFH adopts an adaptive mechanism to tune the block size during the process
of hashing. In the tuning process, each reset point’s rolling hash value (stored in
arrayr) is tested by a new block size which is current block size times k.

It’s easy to prove that:

r mod (k × b) = k × b− 1⇒ r mod b = b− 1 (5)

Obviously, if there is a reset point fit for a new block size, then it must be one of
the survived reset points. This guarantees that the final signature is irrelevant
to the timing of tune operation. After a new reset point election, the temporary
hash result is refined by multiplying each strong hash value between new reset
points. We named parameter k in eq.5 as tune factor. Tune factor is also the
parameter that determines whether a partial file could be compared or not.
Bigger k will generate a longer signature, which we will discuss in Section 5.1.

The opportunity of tune operation is chosen carefully. The expected signature
length is referred to as S. If the current reset point number is larger than k×S,
then a tune operation is necessary. But some files’ entropy may be extremely
low, like a string of repeated characters, thus producing less diversity of rolling
hash values. Tuning block size on these hash values will cause a dramatic fall
out of reset point number. To avoid this, we test every rolling hash value with
a new block size before actual tuning. If the eligible reset point number is less
than S, the tune operation will be aborted.

4.6 Generate SFH signatures

When we input all transferred data, SFH initiates an inorder traversal of the
interval tree to visit every context. Each strong hash value is mapped to a base64
space with LS6B, the data range is printed in format [left offset - right offset]
to mark gaps in passing. To enhance SFH’s ability of partial file matching, we
generate SFH signature with block size b and k× b (k is the tune factor) as the
final output. Since the signature of block size b is a precedent result of k × b
which is stored in backups by tune operation, there is no double calculation. The
format of SFH signature is blocksize : hashb : hash b

k
[rangestart−rangeend]. Fig

5 is an example of SFH signature.

3072:Xk/maCm4yLYtRIFDFnVfHHqx1Jl+[0:432501]
7wr6Es3+TaKxONfbN[6130147:1160163]#12288:XCht

bFS6pHp9GZ[0:432501]lZ1hze2[6130147:1160163]

Fig. 5: SFH signature example, expected length=64 , block size=3072, tune fac-
tor=4.

Since SFH uses the same rolling hash function as ssdeep, for a given input,
the two signatures should be the same length. Some files may not trigger proper
amount of file pieces with any block size. ssdeep deal with this problem by
combining the last few pieces of the message into a single piece. On the contrary,
SFH chooses to keep all the pieces in separate and generate a longer signature
to preserve more details of the input.

5 Signature Comparing

Since the SFH signature length depends on block size and the entropy of input,
as a determinate file, we simply presume that the missing signature character
number is in linear correlation to the missing length. s1 is generated by the
transferred file, so we use ni spaces for each gap in s1, where ni is defined in
eq.6. s′1 represents the filled signature, and s2 is the signature of intact target
file. We use eq.7 to refine the Levenshtein distance result of s1 and s2. Similar
to [17], the final match score in a range from 0 to 100 is calculated by eq.8.
A higher match score indicates a greater probability that the source files have
blocks of values in common and in the same order.

ni =

⌊
GapBytes|s1|
ComputeBytes

⌋
(6)

e (s1, s2) = LE (s′1, s2)−
|s1| (|s′1| − |s1|)

|s′1|
(7)

M = 100− 100e (s1, s2)

|s′1|+ |s2|
(8)

5.1 Partial file matching

In SFH, two signatures are comparable if and only if they are generated by the
same block size. As we’ve described in Section 4.5, tuning a block size is driven
by input data, while data missing will postpone the tune operation. Apparently,
a partial file may have a different block size from its origin. Although SFH
generates a signature with block size b and b/k, it’s still possible that a partial
file has a different block size.

Theorem 1. Assume the reset points are evenly distributed in the complete file,
consider a partial file with a integrity rate of m, and a SFH tune factor k, the
probability that partial file could be compared with its origin is

p =
k2m− 1

k2m− km
,m ∈ (0, 1] , k ∈ N. (9)

It might also be noted that the even distribution is just to simplify the problem;
however, in practice, the distribution of reset points is strongly correlated to
data set.

Proof. For an SFH desired length S, a complete file with a final block size b
has two reset point numbers, one is Lb, and the other one is L b

k
which is the

precedent result of final tuning. Lb satisfied

S ≤ Lb ≤ kS (10)

The partial file’s signature is generated with block size b’ and it’s reset point
number Lb′ satisfied

S ≤ Lb′ ≤ kS (11)

The partial file is comparable, when

b′ = b or b′ =
b

k

Based on eq.11, b′ = b is satisfied if and only if

S ≤ mLb ≤ kS ⇔ S

m
≤ LS ≤

kS

m
(12)

Similarly, b′ = b
k is satisfied if and only if

S ≤ mL b
k
≤ kS ⇔ S ≤ mkLb ≤ kS ⇔ S

mk
≤ Lb ≤

S

m
(13)

The concatenation of eq.12 and eq.13 is

S

mk
≤ Lb ≤

kS

m

As kS ≤ kS
m ,m ∈ (0, 1] ,above inequility is refined as

S

mk
≤ Lb ≤ kS (14)

As we’ve assumed that the reset point is evenly distributed, in the precondition
that Lb saisfies eq.10,the probability p that Lb also saisfies eq.14 is

p =
kS − S

mk

kS − S
=

k2m− 1

k2m− km
(15)

We can use a bigger k to get a better comparable probability, and gener-
ate a longer signature, which will cause overhead on storage and comparison.
Applications should make a trade-off between comparing efficiency and abil-
ity of partial matching. For example, with tune factor k=3 and integrity rate
m=0.3,the comparable probability is 0.94. Based on theorem 1, when m ≥ 1

k ,
partial file is always comparable. Theorem 1 is also confirmed by our evaluation
on real dataset in Section 6.4.

SFH’s ability on partial file matching not only enables DPI to identify in-
complete captured files, but also makes stopping the hazardous transmission
possible.

5.2 Comparing with Massive Files

In practice, DLP and IPS systems may maintain a signature set of valuable files
or malicious softwares, and the volume of the set could be millions. For example,
NIST maintains a large public database of known content–the NSRL [20], which
contains more than 50 million files. A naive solution to deal with such massive
signatures is to compare all pairs by brute force, which is obviously impracticable
and time consuming. Fortunately, the large scale approximate matching problem
has been well studied in string similarity search area for many years [34]. We
adopt a classical method of that area to speed up the comparison–index the SFH
signatures with n-gram.

Building Index : n-gram is a contiguous sequence of n characters from a
given sequence of text.The original design of fuzzy hash requires that similar
hashes must have a common 7-gram. Thus each signature in the set is split into
many 7-grams, treating each 7-gram as key and signature itself as value, then
inserting the key-value pair to a hash table. To save space and speed up the
querying on a multi-core system, techniques such as pruning and partition are
also adopted. Due to space limitation, we will not go into those details here.

Querying Signature : The signature to be queried is also split into many
7-grams, which then looks up every 7-gram in the hash table to find candi-
date signatures. We chose 7-gram because the orignial fuzzy hash deliberately
requires that similar hashes must have a common 7-gram. If any candidate sig-
nature sharing more than c 7-gram with the query, c is a threshold depending
on the predefined similarity baseline, then eq. 8 is performed to determine their
similarity.

6 Evaluation

In this section, we’ll evaluate SFH’s correctness, hash speed and signature length
on t5 corpus [11], which is an open data set built by [26]. t5 contains 4,457 files

Table 2: Normalize TLSH distance to score range from 0 to 100 by related to
ssdeep proximate false positive and recall rate.

TLSH distance < 60 < 50 < 30 < 20 < 10 < 1

ssdeep score > 0 > 30 > 70 > 80 > 90 100

and 1.8GB of data. SFH’s performance was compared with ssdeep v2.13 [14],
sdhash v3.45 [24] and TLSH v3.7.0 [18], which were the current latest versions
at the time of the experiments. ssdeep is one of the de facto standard in the
malware analysis area as it is currently the only similarity digest supported
by Virus-Total [32]. sdhash is also a fuzzy hash implementation that has been
widely applied. They are both supported by US NIST NSRL [20]. TLSH [21] is
an open source fuzzy matching library that was developed by Trend Micro.

6.1 Correctness

We want to show SFH’s capability to capture similarity between different files
among different fuzzy hash algorithms. For similarity preserved hash algorithms,
there can be false positives (non similar pairs returned as similar) as well as false
negatives (similar pairs not returned as similar).

ssdeep, sdhash and SFH schemes provide a similarity score between two
digests which ranges from 0 to 100, where 0 is a mismatch and 100 is a perfect
match (or a near perfect match). A lower number means lower confidence level.
However, the TLSH uses a different scheme to score the similarity between two
digests - a distance score of 0 represents that the files are identical (or nearly
identical) and scores above that represent greater distance between the docu-
ments. To compare these algorithms via a common basis, we normalized TLSH

distance to a range from 0 to 100 based on the evaluation result by [21]. As
shown in Table 2, TLSH distance and ssdeep score with proximate false positive
and recall rate were considered the same.

Figure 6 shows the distribution of detected pairs on different scores in all
scores.

Recall: As there are n(n-1)/2 different pairs in a set containing n files,
almost 10 million pairs in t5, it is not possible to determine all pairs by hand.
Therefore, we make an assumption that the only positives are the ones discovered
by either of the tools and that, if a correlation is not discovered by a tool, then
it is non-existent. This works for our purposes as we are trying to describe the
performance of SFH relative to other algorithms, rather than in absolute terms
ground truth. Based on previous research [26] [21], we set a strict threshold value
for each algorithm, below which we should ignore any positive results as the false
positives rise to 10%. Using the threshold values in Table 3(TLSH threshold is
not a score but a distance), the 4 algorithms detected 387 similar pairs in total.

5 sdhash v4.0 is the latest version, but Vassil Roussev(sdhash author) recommends
sdhash v3.4 to us.

20-29 30-39 40-49 50-59 60-69 70-79 80-89 90-99 100
Scores

0

50

100

150

200

250

300

Fr
eq

ue
nc

y
TLSH
sdhash
ssdeep
SFH

Fig. 6: Distribution of detected pairs
on t5.

SFH

TLSH

20
ssdeep

sdhash

57

6

7

21

16

10

17

1

66

21
3

Fig. 7: The intersections of true posi-
tives sets on t5.

Table 3: Comparing 4 algorithm’s precision and recall rate on t5.

threshold TP FP Precision Recall

TLSH 20 146 95 60.6% 57.0%

sdhash 80 109 16 87.2% 42.6%

ssdeep 80 126 14 90.0% 49.2%

SFH 80 155 17 90.1% 60.5%

sum - 256 131 - -

Precision: We manually reviewed a total of 387 unique file pairs with the
assitance of Beyond Compare [27], and 256 pairs are true positive.

We simply used the following definition for a correct similar pair:

1. text and html files that use a same boilerplate or share more than 10%
common content.

2. pdf, doc, ppt and xls files are syntactic correlations beyond format.
3. jpg and gif files are similar in visual.

Note that the focus of this definition is not on determining the percentage of
similar pairs on the t5, but to compare 4 algorithms on the same real-world data
set. As shown in figure 7, the overlaps of the 4 algorithm varies, that’s because
the threshold we set is more rigorous than [26].For the readability, figure 7 does
not show all the intersections.

To summarize,as shown in Table 3, the adoption of the TZ hash in SFH, does
not decrease the recall and precision rate as a fuzzy hash implementation.

6.2 Hash speed on sequential input

In this section, we want to evaluate the hash speed of SFH, which is crucial in
a DPI scenario. Besides above 4 algorithms, MD5 was also compared for giving
readers an intuitive understanding of the speeds.

Table 4: Hash speed on sequential t5

MD5 TLSH sdhash ssdeep SFH

time(s) 2.62 149.53 60.70 31.03 27.01

speed(MB/s) 703 12 30 59 68

Table 5: SFH hash speed on t5 multi-thread downloading

threads 4 8 16 random order

speed(MB/s) 67.8 67.8 67.6 61.3

space(KB) 2.39 3.40 4.90 310.2

The CPU is a multicore Intel Xeon E5-2698 v3 whose frequency is 2.30GHz.
In our experiment, all the algorithms were executed on one logic core (Hyper-
Threading enabled). The operating system is a Linux RedHat 7.2(kernel 3.10).
We also use t5 as the input of speed test. All the source codes of test algorithms
are compiled with gcc “-O2” and configured as the default option. MD5 result
was generated by OpenSSL v1.0.0. Every algorithm processed the files sequen-
tially and the read chunk size is 4096 bytes. Table 4 shows their speeds on the
test data.

We’ve noted the performance gap between cryptographic hash algorithm and
fuzzy hash algorithm. We believe this was mainly because the SFH is not a
block hash function, but rather each bit is hashed individually. By querying
Galois multiplication table, we can hash 8-bit per call, but there is still more
invocation cost than block hash. In MD5 and SHA1, the input message is broken
up into chunks of 512-bit blocks, which ssdeep and SFH processes byte by byte.

Compared to ssdeep, it needs to recalculate an n-bytes input for O (log n)
times to find a proper block size and O (n) time on each calculation, making the
total running time O (n log n). For SFH with block size tuning, no recalculation
is needed after adjusting the block size, so the total running time is O (n). But
the complexity of the Tillich-Zémor hash weakens this advantage.

6.3 Hash speed on unordered input

As SFH is designed for hash files in transmission, we simulate the unordered
input of multi-thread download. The chunk size is 1460 bytes so as to simu-
late a general TCP payload size. Sequential input is a precondition for original
fuzzy hash and other cryptographic hash algorithm, so they are not comparable
with SFH on this scenario. Table 5 shows the speed of SFH on different con-
current fragment numbers. We could sense no significant slowdown, even if the
input order is completely random. The memory consumption on a 16 concurrent
fragments is 4.90KB, which is affordable for a DPI middlebox.

6.4 Comparability of incomplete file

We’ve discussed that files captured from network traffic maybe incomplete due
to many reasons. And we’ve proven that, if the product of integrity rate m and
tune factor k is bigger than 1, partial file has a same block size as its origin. We
want to evaluate this theory on real data.

For each file in t5, we only input a protion of m(0∼0.5) from the frist byte
of the file to SFH. If the block size is same as the complete one, by design, they
are comparable. As to the threshold of the score, the choice is user’s. As shown
in figure 8, the results mostly fit the theorem 1 speculation.

0.0

0.5

1.0

pr
ob

ab
ilit

y

k=2
t5
theoretical

k=3

t5
theoretical

0.1 0.2 0.3 0.4 0.5
integrity rate

0.0

0.5

1.0

pr
ob

ab
ilit

y

k=4

t5
theoretical

0.1 0.2 0.3 0.4 0.5
integrity rate

k=5

t5
theoretical

Fig. 8: Incomplete file comparable probability on t5 in different tune factor k,
the theoretical results were sampled with eq 9.

6.5 Deploying SFH in Practice

Having an intuitive understanding of the practicalities of SFH on network traffic,
we present a deployment case. As a case study, we integrated SFH as a plugin
to a carrier-grade DPI system to inspect malicious Android APP installation
package in network traffic. It is worth mentioning that SFH is really flexible to
utilize on a DPI system for no more buffering and rearranging.

The detection proceeded as follows:

1. We first downloaded malicious Android APP samples from Virus Share [28],
including 35397 files with a total size 52.82GB, and ran SFH signature on
each file.

2. For comparing efficiency, we indexed the 35397 signatures with the approach
in Section 5.2.

3. The DPI system was deployed in an anonymous ISP and processed about
10Gbps traffic. The plugin identifies an APP package transmission with its
URL. Then the plugin input the subsequent packets this HTTP session to
SFH. Thus, a data structure contains SFH signature and URL was generated.

4. The last step is querying the APP’s signature in the previously built index
to measure similarity. If the distance (eq 7) is less than a threshold, an alarm
log is generated.

In our experiment, the DPI system processed 184,688 Android APK down-
loads, and got 14 alarm logs which related to 10 apps. To verify the result, we
tried to retrieve suspect APP packages with the recorded URLs, and uploaded
to VirusTotal [32] for further examination.

After all, among four successful downloaded apps, two were identified as
malicious. The results are shown in Fig 9. We are gratified to see that Football
Highlights is detected by similarity, which conventional methods are incapable of.
The visual check on two false positive app binaries shows that, both of their file
contents were quite similar to the malicious sample. More precisely, they shared
95% mutual content and presumably used same development components. This
defect inherits from the basic idea of approximate matching but not SFH.

ALARM URL: res.cnappbox.com/libs/AdUnion50.apk

ALARM SFH: 6144:n6mrnX64nT0tgi8Wa5gQCY6xZyn+O5ClxXYDInv+

 HA8VSNfbUTxx1AzeR3VKlxhO4DOaR[0:401688]

Sample SFH: 6144:n6mrnX64nT0tgi8Wa5gQCY6xZyn+O5ClxXYDInv+

 HA8VSNfbUTxx1AzeR3VKlxhO4DOaR[0:401688]

File name: AdUnion50.apk

Detection ratio: 26 / 57

Analysis date: 2017-03-10 04:34:56 UTC (2 days, 22 hours ago)

Result: Android.Adware.Plankton.A

(a) Suck Ads

ALARM URL:ndl.mgccw.com/mu3/app/20140406/03/1396724471646/co

 m.tufan.soccerhighlights.apk?md5=5d37a2a6a6316ce464e

 0529e2b54d027

ALARM SFH:49152:bEDHVo6WMAfK9OWbUKyb8Ndibunp8zTyyV2Nk6/

 WrT4qYyvcj0bpfYlxcAOLVcJwESJuUymBMGiT1oxvK2yRP

 v6zuh8EFguWLQ29kSgrCWdvXawlKVXdWkNQVF6k34U4

 XC9KcF/jFlS4Hx0SB4S9+TNfm4Q+dG[0:6157658]

Sample SFH:49152:mV+SIigSbZbGE3+5ImmFDVZMDBhtZgMDEhx2tSE

 DHVo6WMAfK9OWbUKyb8Ndibunp8zTyyV2Nk6/WrT4qYyv

 cj0bpfYlxcAOLVcJwESJuUymBMGiT1oxvK2yRPv6zuh8EFg

 uWLQ29kSgrCWdvXawl[0:6162751]

File name: com.tufan.soccerhighlights_21.apk

Detection ratio: 16 / 56

Analysis date: 2016-04-06 02:31:47 UTC (11 months, 1 week ago)

Result：Adware.AndroidOS.LeadBolt.a (v)

(b) Football Highlights

Fig. 9: Two SFH positive APP packages that examined byVirus Total.

7 Related Work

Fuzzy hash algorithm has evolved for many years. [17] developed an open source
fuzzy hash tool named ssdeep [14], which was used to find similarity files in
specified sets. [6] and [2] proposed approaches to improve the performance of
fuzzy hash. So far, the challenges of applying fuzzy hash on network traffic are
not considered.

sdhash [25] is another widely applied approach for similar file detection. It
tries to find from every neighborhood the features that have the lowest empiri-
cal probability of being encountered by chance. Each of the selected features is
hashed and placed into a Bloom filter. When a filter reaches its capacity, a new
filter is created until all the features are accommodated. Thus, a similarity di-
gest consists of a sequence of Bloom filters. sdhash digest length is about 2∼3%

of the length of the input, which is different from fuzzy hash’s bounded digest
length(64∼128 bytes). For it retains more details of the original file, sdhash is
better at embedded object detection than ssdeep [26]. However, more details
bring overheads on storage and comparing, e.g. sdhash generated a 101GB di-
gests for 50 million NSRL [20] files, by contrast, same digests that was generated
by ssdeep is 1.2 GB.

MinHash [4] and SimHash [5] have been widely adopted in industry to find
out near duplicated text files. They all belong to locality sensitive hash (LSH)
algorithms. [29] claimed that MinHash outperforms SimHash in binary data,
but curiously, researchers rarely use LSH in digital forensic area. In fact, [13]
pointed out that LSH aims at mapping similar objects into the same bucket,
while approximate matching outputs from a similarity digest that is comparable.
There are also some open source tools for similar file detection, such as Nilsimsa
[19], TLSH [21],mrsh-v2 [3] etc.

8 Limitations

Although SFH is used in security applications, it’s definitely not cryptographic
secure. Moreover, SFH is incapable of identifying files that were compressed or
encrypted. As a hash functions, SFH’s limitations are twofold.

Possibility of Collision :As the original fuzzy hash algorithm, SFHmapped
a file piece to a 6-bit value, so it is possible that two distinct pieces map to the
same character. Moreover, it is possible that two files can have identical SFH
signatures but still be different files. As Kornblum [17] had discussed, the prob-
ability that it will fail to detect a change is 2−12 to 2−6. And for two completely

random files with a signature length S, the odds of an exact match are
(
2−6

)S
.

We can increase the expected signature length to reduce such collision.
Signature Comparability : A meaningful comparison can only be per-

formed on files with same block size. For different files approximately matching,
that’s not a problem but a useful feature because different block size means two
files are quite different both in size and content. For partial file matching, as
we’ve discussed in Section 5.1, the cut off of 1/k file is always compared, where
k is the tune factor introduced in Section 4.5. Below this level, the block sizes
are too different to make a meaningful comparison. Embedded object detection
is similar for the small embedded object could be considered as a partial part of
the bigger file.

9 Conclusion

In this paper, we have presented the SFH algorithm, which is used for hash
files from network traffic in real-time. Based on context triggered piecewise hash
concept, SFH uses the Tillich-Zémor hash as a strong hash function and interval
tree to index calculation contexts, which make it perfectly suitable for unordered
and incomplete input. With block size tuning, SFH can hash data stream on a

one-way processing. Besides, compared to ssdeep, SFH reduces computation
complexity from O (n log n) to O (n). Our evaluation shows that SFH’s speed is
68MB/s and it consumes 5KB memory. And compared to other fuzzy hash algo-
rithms, SFH’s precision and recall are not compromised for processing unordered
and incomplete input. To demonstrate its deployment, we integrate SFH into a
DPI system to inspect malicious Android APP packages, and it showed a good
usability in practice.

Additionaly, DPI system equiped with SFH can identify valuable files from
egress traffic and malicious software from ingress traffic. Another benfit from
SFH’s ability of partial file matching on DPI systems is that it is even possible
to identify files before transmission completes and stop the attack in action.

References

1. Introduction to Algorithms (3rd ed.). MIT Press and McGraw-Hill, 2009.
2. Frank Breitinger and Harald Baier. Performance issues about context-triggered

piecewise hashing. In International Conference on Digital Forensics and Cyber
Crime, pages 141–155. Springer, 2011.

3. Frank Breitinger and Harald Baier. Similarity preserving hashing: Eligible proper-
ties and a new algorithm mrsh-v2. In International Conference on Digital Forensics
and Cyber Crime, pages 167–182. Springer, 2012.

4. Andrei Z Broder. On the resemblance and containment of documents. In Com-
pression and Complexity of Sequences 1997. Proceedings, pages 21–29. IEEE, 1997.

5. Moses S Charikar. Similarity estimation techniques from rounding algorithms. In
Proceedings of the thiry-fourth annual ACM symposium on Theory of computing,
pages 380–388. ACM, 2002.

6. Long Chen and Guoyin Wang. An efficient piecewise hashing method for computer
forensics. In Knowledge Discovery and Data Mining, 2008. WKDD 2008. First
International Workshop on, pages 635–638. IEEE, 2008.

7. Sarang Dharmapurikar, Praveen Krishnamurthy, Todd Sproull, and John Lock-
wood. Deep packet inspection using parallel bloom filters. In High performance
interconnects, 2003. proceedings. 11th symposium on, pages 44–51. IEEE, 2003.

8. Yuval Elovici, Asaf Shabtai, Robert Moskovitch, Gil Tahan, and Chanan Glezer.
Applying machine learning techniques for detection of malicious code in network
traffic. In Annual Conference on Artificial Intelligence, pages 44–50. Springer,
2007.

9. R Fielding, James Gettys, Jeffrey C Mogul, Henrik Frystyk Nielsen, and Larry
Masinter. Hypertext transfer protocol http /1.1, rfc2616, 1999.

10. Open Information Security Foundation. Suricata, 2017.
11. GovDocs. t5 corpus code, 2011.
12. Markus Grassl, Ivana Ilić, Spyros Magliveras, and Rainer Steinwandt. Cryptanaly-

sis of the tillich–zémor hash function. Journal of Cryptology, 24(1):148–156, 2011.
13. Vikram S Harichandran, Frank Breitinger, and Ibrahim Baggili. Bytewise approx-

imate matching: The good, the bad, and the unknown. The Journal of Digital
Forensics, Security and Law: JDFSL, 11(2):59, 2016.

14. jessekornblum. ssdeep source code, 2015.
15. KT Joju and PL Lilly. Preimage of tillich–zemor hash function with new genera-

tors. International Journal of Applied Mathematical Sciences, ISSN, pages 4237–
4248, 2013.

16. KT Joju and PL Lilly. Improved form of tillich-zemor hash function. International
Journal of Theoretical Physics and Cryptography, 6, 2014.

17. Jesse Kornblum. Identifying almost identical files using context triggered piecewise
hashing. Digital investigation, 3:91–97, 2006.

18. Trend Micro. Tlsh code, 2017.
19. Nilsimsa. Nilsimsa v.0.2.4, 2001.
20. US NIST. National software reference library, 2013.
21. Jonathan Oliver, Chun Cheng, and Yanggui Chen. Tlsh–a locality sensitive hash.

In Cybercrime and Trustworthy Computing Workshop (CTC), 2013 Fourth, pages
7–13. IEEE, 2013.

22. Christophe Petit and Jean-Jacques Quisquater. Preimages for the tillich-zémor
hash function. In International Workshop on Selected Areas in Cryptography, pages
282–301. Springer, 2010.

23. Martin Roesch et al. Snort: Lightweight intrusion detection for networks. In Lisa,
volume 99, pages 229–238, 1999.

24. V Roussev. Sdhash version 3.4, 2013.
25. Vassil Roussev. Data fingerprinting with similarity digests. In IFIP International

Conference on Digital Forensics, pages 207–226. Springer, 2010.
26. Vassil Roussev. An evaluation of forensic similarity hashes. digital investigation,

8:S34–S41, 2011.
27. Inc Scooter Software. Beyond compare, 2017.
28. Virus Share. https://virusshare.com/, 2017.
29. Anshumali Shrivastava and Ping Li. In defense of minhash over simhash. In

AISTATS, pages 886–894, 2014.
30. Xiaokui Shu and Danfeng Daphne Yao. Data leak detection as a service. In In-

ternational Conference on Security and Privacy in Communication Systems, pages
222–240. Springer, 2012.

31. Jean-Pierre Tillich and Gilles Zémor. Hashing with sl 2. In Advances in Cryptology
CRYPTO 94, pages 40–49. Springer, 1994.

32. Virus Total. https://www.virustotal.com/, 2017.
33. Andrew Tridgell. Spamsum readme, 2002.
34. Sebastian Wandelt, Dong Deng, Stefan Gerdjikov, Shashwat Mishra, Petar Mi-

tankin, Manish Patil, Enrico Siragusa, Alexander Tiskin, Wei Wang, Jiaying Wang,
et al. State-of-the-art in string similarity search and join. ACM SIGMOD Record,
43(1):64–76, 2014.

